首页> 外文OA文献 >Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils
【2h】

Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils

机译:在一组北方森林土壤中,短期碳输入会增加微生物氮需求,但不会增加微生物氮的开采

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rising carbon dioxide (CO2) concentrations and temperatures are expected to stimulate plant productivity and ecosystem C sequestration, but these effects require a concurrent increase in N availability for plants. Plants might indirectly promote N availability as they release organic C into the soil (e.g., by root exudation) that can increase microbial soil organic matter (SOM) decomposition (“priming effect”), and possibly the enzymatic breakdown of N-rich polymers, such as proteins, into bio-available units (“N mining”). We tested the adjustment of protein depolymerization to changing soil C and N availability in a laboratory experiment. We added easily available C or N sources to six boreal forest soils, and determined soil organic C mineralization, gross protein depolymerization and gross ammonification rates (using 15N pool dilution assays), and potential extracellular enzyme activities after 1 week of incubation. Added C sources were 13C-labelled to distinguish substrate from soil derived C mineralization. Observed effects reflect short-term adaptations of non-symbiotic soil microorganisms to increased C or N availability. Although C input promoted microbial growth and N demand, we did not find indicators of increased N mobilization from SOM polymers, given that none of the soils showed a significant increase in protein depolymerization, and only one soil showed a significant increase in N-targeting enzymes. Instead, our findings suggest that microorganisms immobilized the already available N more efficiently, as indicated by decreased ammonification and inorganic N concentrations. Likewise, although N input stimulated ammonification, we found no significant effect on protein depolymerization. Although our findings do not rule out in general that higher plant-soil C allocation can promote microbial N mining, they suggest that such an effect can be counteracted, at least in the short term, by increased microbial N immobilization, further aggravating plant N limitation.
机译:二氧化碳(CO2)浓度和温度的升高有望刺激植物的生产力和生态系统的碳固存,但这些影响需要同时增加植物的氮素利用率。植物可能会间接提高氮的利用率,因为它们会将有机碳释放到土壤中(例如,通过根系分泌物),这会增加微生物土壤有机物(SOM)的分解(“引发效应”),并可能导致富氮聚合物的酶促分解,例如蛋白质,转化为生物可利用的单位(“ N采矿”)。我们在实验室实验中测试了蛋白质解聚对改变土壤C和N有效性的调节。我们在六种北方森林土壤中添加了容易获得的碳或氮源,并确定了土壤有机碳的矿化度,总蛋白质解聚率和总氨化率(使用15N池稀释法)以及孵育1周后的潜在细胞外酶活性。添加的C源经过13C标记,以区分基质与土壤衍生的C矿化作用。观察到的影响反映了非共生土壤微生物对碳或氮有效性增加的短期适应。尽管碳的输入促进了微生物的生长和氮的需求,但我们没有发现增加SOM聚合物中氮的动员的指标,因为没有一种土壤显示出蛋白质解聚的显着增加,只有一种土壤显示出了N靶向酶的显着增加。 。取而代之的是,我们的发现表明,如降低的氨化作用和无机氮的浓度所表明的那样,微生物可以更有效地固定已有的氮。同样,尽管氮输入刺激了氨化作用,但我们发现对蛋白质解聚没有显着影响。尽管我们的研究结果通常不能排除较高的植物土壤碳分配量可以促进微生物氮的开采,但它们表明,至少在短期内,可以通过增加微生物氮的固定化,进一步加剧植物氮的限制来抵消这种影响。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号